

Topic
HORIZON-CL2-HERITAGE-2021-01-01: Green technologies and materials for cultural heritage

Торіс	Budget (EUR) - Year : 2021	Stages	Opening date	Deadline
HORIZON-CL2-2021-HERITAGE-01-01 - HORIZON-RIA	12 000 000	single-	22 June	07 October
HORIZON Research and Innovation Actions	12 000 000	stage	2021	2021

Scope

Materials and methods for the conservation and restoration of cultural heritage have been researched, with less energy consuming, environmental friendly, not harmful for the health of operators and curators, durable and sustainable. More materials and new tailored solutions have to be addressed to match the Green Deal objectives, taking into account the citizens' health and safe for the operators and the artefacts. The scope includes buildings, monuments and artefacts belonging to cultural heritage.

AIDIMME

AIDIMME is the Metal-Processing, Wood, Furniture and Packaging Technology Institute. A technology centre that fosters the competitiveness of the companies of the mentioned industries through research and innovation activities and its key competences are in Cultural and historic heritage preservation; Biobased materials; Advanced application of materials; Modified surfaces; Industry 4.0; Treatment of water and waste; Additive Manufacturing; Product Development and Optimization; Toxicity of materials, Packaging Systems; Chemical Technologies; Process and Sustainability; Circular Economy; Socioeconomic research; Testing laboratories. ⁱ

Below it is a description of how AIDIMME could contribute to this topic:

EXPECTED OUTCOME	AIDIMME	AIDIMME EXPERIENCE	Equipment more
	CONTRIBUTION		relevant
To develop methods to	To develop coatings	Research projects to	Laboratory for reaction
conserve, preserve and	based on non-toxic and	develop coating with	to fire tests
restore monuments	bio-based materials	advanced properties	Laboratory for the
and artefacts using	with advanced	(hydrophobic, biocide,	development of
materials in a	functionality for	increased wear	coatings with advanced
sustainable, green way	protecting monuments	behavior, flame	properties using the
	and artefacts:	retardant,) "	solgel technique and
	waterproof, fire flame		pilots for their
	retardant, biocide, UV		application.
	radiation, capture of		Atmospheric plasma to
	harmful gases		change surface energy.
			Contact angle
			equipment to measure
			surface energy.
			Microbiology
			laboratory to evaluate
			the biocidal capacity.
			Chemical equipment to
			analyze toxic
			components of
			materials (IR, HS-GC,
			HPLC, ICP,)
			Chambers to measure
			air quality.

EAIDIMME ©

	Consolidation of	Research projects	NDT equipment for
	wooden and concrete	dealing with new	mechanical strength
	structures using	methods to improve	
	recycled and/or bio-	damaged wooden	Traction, compression,
	based materials	structures using	flexion equipment for
		recycled and bio-based	beams and similar
		materials ⁱⁱⁱ	elements
		Research projects to	Thermic conductivity
		improve concrete by	equipment
		recycled fillers iv	
		recycled illers	Equipment to measure
		Diagnosis and	useful properties for
		consulting tasks for	construction elements:
		building restoring	longitudinal stability,
D 1 10 6			vapor resistance
Research on quality of	To develop schemes to	Research projects to	Sensors to measure
conservation, leading	carry out optimized	monitor materials and	CH4, CO2, light and
to a more sustainable	maintenance, trough	elements degradation ^v	moisture content
and green maintenance	appropriate data		related to xylophages
and restoration	compilation	Patents for sensors to	Alarm system for
		monitor wood	xylophages apparition
	Monitoring of	biodegradation due to	
	degradation of	moisture and	Chambers where
	materials and	xylophages	simulate different
	construction elements.		agents occurring in
		Application of these	construction, at
	To develop sustainable	sensors in real sites	laboratory and pilot
	pre-fabricated	(Mallorca, Valencia,	scale
	elements to improve	Palencia, Ávila,),	
	conservation and	most of them belonging	Hot plates press to
	maintenance with low	to heritage	build sandwich
	on-site operation.	10 110111000	elements, at pilot scale.
		Project to develop	σ. σ
	Use of digital twins to	environmental friendly	Pilot plant for digital
	simulate efforts and	prefabricated elements	twins and VR/AR.
	increase behavior of	to be used inside and	Showroom and demo
	real element.	outside (bio-based	environments.
	reareiement.	materials, recycled	environments.
	Use of AR/VR for	materials, recycled	Additive Manufacturing
	I		Additive Manufacturing
	developing a virtual) ^{vi}	in metals: different
	replication of the	Collaboration	technologies based on
	artefact/building and	Collaboration with	powder bed fusion
	for creating mixing	architects to find the	(laser and electron
	reality environments.	optimized restoration	beam).
		and maintenance	A 1 100
	Use of additive	method to be applied	Additive Manufacturing
	manufacturing for	in real buildings	in polymers: different
	repairing and restoring		technologies for
some elements and		Tasks in standardization	processing resins and
	artefacts. The materials	working groups: paints,	thermoplastics such as
	to be considered could	wood based materials,	SLA, DLP, SLS, CFF, and
	be metal alloys such	smart cities	MJF. Also vacuum
	steel, copper,		casting for producing
	aluminum among	Research on digital	replicas.
	others; and different	twins and VR/AR	
	polymers such as	solutions for different	3D scanners for
			i .

	polyamides, resins, among others.	applications. Research projects on Additive Manufacturing at national and European level. vii	obtaining the 3d model from a real object.
Strengthen citizen's contribution	Training Diffusion Guide of good practices Implementation on rural and uninhabited areas	Training department where technicians teach about several materials to different kind of attenders: academic, workers Contact with different communication media Realization of guides of good practice to different subjects: how to build a safe furniture, MDF for food contact	

Other issues to consider, in which AIDIMME could contribute:

- Possible contribution to relevant platforms of the Joint Research Centre (JRC) in terms of data, indicators and knowledge by means of the monitoring systems and digital twins.
- Life cycle assessment (LCA) and the environmental footprint method.
- The use of digital and cutting-edge technologies by means of monitoring systems, digital twins and additive manufacturing.
- An active and sustainable engagement with stakeholders, social innovators and citizens by means of
 a network based on historic activities. AIDIMME could provide different stakeholders to the
 Consortium depending on the requirements.
- The active involvement of local, regional or national authorities and sectoral social partners, particularly in the uptake and implementation of research results and recommendations by means of a network based on historic activities. AIDIMME could provide different stakeholders to the Consortium depending on the requirements.
- A clear strategy for the uptake of research outcomes, recommendations or results, in particular where CCIs are participating or are concerned by means of a specific R&D exploitation department.
 AIDIMME has a close relationship with SMEs which could exploit the outcomes.
- Training and education activities for targeted groups of users and/or stakeholders by means of a specific training department.
- A robust plan for how projects will use or build on outputs and results from research already undertaken and technology already available by means of a specific R&D exploitation department.
- Increased participation of CCIs, SMEs and industry by means of a network based on historic
 activities.

Contact person:

Rosa Pérez (rperez@aidimme.es)

In the area of Cultural and Historic Heritage Preservation, the following research groups are mainly involved:

Wood Technology and Biotechnology Research Group

With more than 25 years of experience, the team expertise includes:

- Research on wood protection (new wood treatments and modifications, paints, varnish, coatings, nanotechnologies, etc.) on both timber constructions and wood-based products.
- Non-destructive evaluation of old timber in construction: wooden beams and columns, structures, and historical heritage.
- Innovative reinforcement and repair of old timber elements: wooden beams and columns, structures, and historical heritage.
- Remote and automatized monitoring of timber elements, structures, historical heritage buildings and artworks by using wireless sensors and IT/Smart City technologies.
- Testing of wood and wood-based products against termites, xylophages, moisture damages and others wood deteriorating agents.
- Biocides efficacy tests on wood preservatives
- Quality control during building and structure execution.
- Innovation on timber architecture: organic structures, parametric architecture, new materials (reinforced timber, lightweight panels, etc.), temporary structures, and joints.
- Detection and handling of xylophagous fungi and insects such as in termites' detection and handling since the Mediterranean area has a high activity of those insects.

The facilities include: A microbiology laboratory and an entomology laboratory full equipped with all type of chambers and impregnation autoclaves; Devices for non-destructive evaluation of wood; Sensors for remote monitoring of wood; Environmental laboratory fully equipped; Different termites colonies (Reticulitermes spp.) kept in laboratory conditions for its studies and research.

The Raw Materials Research Group

The team is composed by a multi-disciplinary technical team that includes chemists, biologist, chemical engineers, forestry engineers and physicists. This group is more than 30 years in a close relationship with the industry focusing its activities on providing solutions to the industry needs and requirements and also on giving support to the industry to become more competitive and innovate through technological advances.

The group has carried out research in different materials such as wood, wood-based materials, panels, resins, coatings, foams, fabrics, fittings, metallic parts, plastics...

Additionally the group is actively involved in standardisation activities, having expert members and coordinators in CTN (Spanish committees), CEN (European committees) and ISO (international committees).

Some examples of research activities carried out by this group in the last five years are: Development of fire-resistant and damp-resistant materials and products; Improvement of adhesive and resin properties; Reduction of formaldehyde emission in wooden components; Development of biodegradation resistant materials and products; Improvement of solid wood and wood based boards by different techniques; Optimisation of paints and varnishes used in different sectors; Development of innovative technologies for the surface treatment and finishing of wooden composites.

The group also participates in different standardization committees, among others:: AEN/CTN 112 "Corrosión y Protección de los Materiales Metálicos". CEN/TC 262 "Corrosion and protection of metallic materials"; ISO/TC 107 "Metallic and other inorganic coatings"; ISO/TC 156 "Corrosion of metals and alloys; GT3 Jewelry and horology; ISO/TC 114 "Horology" SC 06 "Precious metals coverings"; CEN/TC 139 "Paints and varnishes"; ISO/TC 35 "Paints and varnishes"; ISO/TC 135 "Non destructive testing"; AEN/CTN 48 "Paints and Varnishes; CEN/TC 139/WG 2 Coating systems for wood; ISO/TC 79 SC2 "Organic and anodic oxidation coatings on aluminum"; AEN/CTN 56 de "Wood and cork"; AEN/CTN 57 de "Cellulose and paper"; Sectorial group for the European Normative of Construction goods SG 20 "Wood based panels";

AEN/CTN 23/SC 6 "Security against fires. Tests of materials reaction against fire"; CEN/TC 127 Fire safety in buildings WG 4 Reaction to fire.

"List of research projects:

- NANOLASUR. Development of nano-technologic and new water-based lasurs with high behaviour for wooden elements to be used outside, IMPIVA 2011-2014.
- Development of nano-technologic auto-cleaning coating for different substrates IMPIVA, 2008-2009
- Research and development of new added-value hydrophobic materials for furniture sector, using nanocomponents IMPIVA. 2008-2010.
- NANOMEC. Research on new coating formulations with high mechanic properties using nanoadditives IMPIVA 2010-2011.
- Paints and varnishes formulated with biocides for wooden, IMPIVA 2006-2008.
- NANOSURF Surfaces modification techniques for polymeric, metallic, wooden, textile and ceramic substrates by nanotechnology, IVACE 2014-2015.
- FUNGISTOP Development of paints with antifungal properties using bio-based biocides, IVACE 20-21
- MESOGEL Antimicrobial coverings nano and meso structured for prosthesis using anodized and sol-gel coatings, IVACE 20-21
- RICORR Coatings added with indicators for corrosion, IVACE 20-21
- WALL4WOOD Improvement of dimensional stability, wooden durability and fungus prevention using hydrophobic coatings, IVACE 20-21
- ANTIBACTERIANO Development of antimicrobial surfaces using coatings formulated with natural and sustainable biocides, IVACE 19-20
- PROTEGEL- Development of antimicrobial coatings base on argent nanoparticles to be applied on titanium substrates, IVACE 19-20
- SOLGELMADERA Multifunctional and hybrid coating for wooden elements to be used in interior ambient, IVACE 18-19
- RECORD Development of new generation anticorrosive high behaviour coating, RTC-2015-3513-5, Ministerio de Ciencia, Innovación y Universidades, 2015-2019
- Research on resins formulated with additives and fillers with high fire behaviour to be used on wooden elements to fulfil Euroclass A2, CDTI 2016 – 2018 (Company's project).

List of papers:

- Rosa Pérez, Julián Moratalla, Veneer coloration and matching using ultraviolet radiation.
 DREWNO WOOD JOURNAL 2007 no 178
- Grassi, A.P.; Perez, M.A.A.; Leon, F.P.; Campos, R.M.P., Detection of Circular Defects on Varnished or Painted Surfaces by Image Fusion, Multisensor Fusion and Integration for Intelligent Systems, 2006 IEEE International Conference, pages 255 – 260, E-ISBN: 1-4244-0567-X, Print ISBN: 1-4244-0566-1
- Microencapsulation of cerium and its application in sol—gel coatings for the corrosion protection of aluminum alloy AA2024, A. Valero-Gómez, J. Molina, S. Pradas, M.J. López-Tendero, F. Bosch, 10.1007/s10971-019-05151-8.

List of patents:

Artificial vision system to detect defects on coated surfaces, 2 381 723, 16-04-2013

iii List of research projects:

- RESTRUCTMAD Research and development of innovative solutions for retrofitting wooden structures, IVACE 20-21
- MEND-ME Development of methodology for non destructive testing applied on structural Wood to be use don restoration, IVACE 19-20
- Celluwood, Laminated Strong Eco-Material for Building Construction Made of Cellulose-Strengthened, UE 2011 – 2013

- NANOMAD. Nano-technologic treatment for wooden elements to improve fire behavior, MICINN 2009-2011.
- MATRAFOC Improvement of fire behaviour of treated wood for different end uses, IVACE 2019
- Development of new sustainable for inside and outside ambient in construction (RPETSTONE),
 CDTI 2017 2019 (Company's project)

List of papers:

- Manuel Rebollar, Rosa Pérez, Rosario Vidal, Comparison between oriented strand boards and other wood based panels for the manufacture of furniture. Materials and design, 2006
- CELLUWOOD PROJECT: Laminated strong eco-material for building construction made of cellulose-strengthened woods, Miguel Ángel Abián, Guillem Segura, Patricia Boquera, 978-84-697-2060-8
- Analysis of influence of materials used in interior ambient on fire unleashing, Stephane García, Raquel Cánovas, Nerea Carpintero, Rosa Pérez, 978-84-617-6380-1
- Evaluation of thermally-treated wood of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) against Mediterranean termites (Reticulitermes spp.), Oliver-Villanueva, JV., Gascón-Garrido, P. & Ibiza-Palacios, M.S. Eur. J. Wood Prod. (2013) 71: 391, ISSN 0018-3768
- Resistance of wood modified with different technologies against Mediterranean termites (Reticulitermes spp.), P. Gascón-Garrido, J.V. Oliver-Villanueva, M.S. Ibiza-Palacios, H. Militz, C. Mai, S. Adamopoulos, ISSN 0964-8305
- Treatment of natural wood veneers with nano-oxides to improve their fire behavior, A B Francés Bueno, M V Navarro Bañón, L Martínez de Morentín and J Moratalla García, doi:10.1088/1757-899X/64/1/012021

iv List of research projects:

 Research and development of new sustainable solutions to holistic management of CDW (construction demolition waste). Development of mortar from recycled aggregates, AVI 2020-2021 (Company's project)

List of papers:

• Ceramic material reinforced with metallic fibers, SABURIT LLAUDIS, A.; VICENT CABEDO, M.; GARCÍA TEN, F.J.; NIÑEROLA GONZÁLEZ, RUBÉN.; MARTÍNEZ DÍAZ, ELKIN, 978-84-959-3126-9

v List of research projects:

- Habitat Sostenible Development and integration of solutions to improve the ambient comfort, IVACE 2013-2015. TP: Soluciones para el confort ambiental.
- SH BUILIDINGS Smart Heritage Buildings, SOE3/P1/E508, 2012 2014, INTERREG IV SUDOE
- SHCITY-SMART HERITAGE CITY

List of papers:

- Miguel Ángel Abián, Rosa Perez y otros, European project SHCity: Sustainable management and preserving of historic urban sites by technologies from Intelligent Cities, Gestión Municipal 2018
- Miguel Ángel Abián, Rosa Perez y otros, Smart Heritage Management The SHCity Project Approach, 2018 International Conference on Intelligent Systems (IS)
- Advanced wireless sensors for termite detection in wood constructions, J. V. Oliver-Villanueva
 M. A. Abián-Pérez, ISSN 0043-7719 Volume 47 Number 2 Wood Sci Technol (2013) 47:269-280
- Smart Heritage City: A Project for a heritage intelligent city, Rosa Ruiz Entrecanales, Aurélien Henon, Fernando Monteiro, Susana San José Alonso, Alessandra Gandini, Mikel Zubiaga, Rosa Pérez, Miguel Ángel Abián, Jose Carlos García García, Daniel Basulto García-Risco, 978-1980878469
- SMART HERITAGE CITY, Daniel Basulto, Jose Carlos García, Rosa Ruiz, Aurélien Henon, Adriana Mar, Fernando Monteiro, Susana San José, Alessandra Gandini, Mikel Zubiaga, Rosa Pérez, Miguel Ángel Abián, 2386-8198/978-84-697-7033-7

- Smart City Trends. Trends on Intelligent cities and opportunities for hábitat sectors, MªGiuseppa Casado D'Amato, Cristina Revert Carreres, Vicente Sales Vivó, Sabrina Veral Borja, 978-84-941029-3-6
- Analysis of CO2 as bio-indicator of termite degradation in wood structures, JV Oliver-Villanueva, MS Ibiza-Palacios, V Lerma-Arce, JE Luzuriaga, ISSN: 1336-4561

List of patents:

- Apparatus and methodology for detecting bio-degradation in wooden elements, 2 324 445, 22-04-2010
- Automatic tool and methodology for detecting and quantification of termites from emitted CO2
 , 2 369 294, 16-10-2012
- Automatic tool and methodology for detecting and quantification of termites from emitted CH4, 2 368 392, 03-10-2012

vi List of research projects:

- Development of new construction systems made of wood veneer and glass laminate for light structures to be used as coverings, IVACE 10-11
- PRESOST-Development of pre-fabricated elements for inside and outside construction,
 Consellería de Innovación, Universidades, Ciencia y sociedad Digital, GV 2021

List of papers:

• Design and construction of light structures made of wood veneer and glass laminate, Miguel Ángel Abián, Manuel García y Kiyanshid Hedjri, 978-84-95077-53-0

List of patents

 Method for manufacturing glass laminate with modified wooden veneer and its use in construction, ES2538041, 16/12/2013

vii List of research projects:

- Development of the complete workflow for producing and using a novel nano-modified Ti based alloy for addtive manufacturing in special applications: Nanotun3D.
- Processing of alloys prone to hot cracking using additive laser beam manufacturing technologies. HOTC
- Feasibility study and conceptual development of an additive manufacturing technology for the furniture and wood sector. FAMA.
- Advanced machining system for complex parts manufactured using additive manufacturing technologies (3D Printing). PRECISION FA.
- Definition of a design methodology for the customization of products adapted to the morphological variability of the population, manufactured using Flexible production technologies. CUSTOM ON BODY.
- Improvement of the performance of materials processed with additive manufacturing through post-processing. SKIN.
- Evolution of the thermal process in additive manufacturing technology in metals. SUPPORT-ZERO.
- Development of ultralight alloys to be processed with additive manufacturing technologies.
 ULTRALIGHT.
- CUSTODIAN: Customized photonic devices for defectless laser based manufacturing
- INEX-ADAM: INCREASING EXCELLENCE ON ADVANCED ADDITIVE MANUFACTURING